SHORT PAPER

A simple and efficient method for the dehydrogenation of symmetric hydrazo compounds with NaNO₂/NaHSO₄•H₂O/SiO₂⁺

Xiao-Chuan Li^a, Yu-Lu Wang^{a*} and Jin-Ye Wang^{b*}

^aCollege of Chemical and Environmental Science, Henan Normal University, Xinxiang, Henan, 453002, P.R. China

^aThe Key Laboratory of Environmental Science and Technology of High Education of Henan Province, P.R. China

^bShanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032, P.R. China

In this paper, 18 symmetric hydrazo compounds undergo rapid oxidation to corresponding azo compounds using NaNO₂/NaHSO₄•H₂O/SiO₂ as a novel oxidising agent under mild conditions for the first time.

Keywords: dehydrogenation, symmetric hydrazo compounds, NaNO₂/NaHSO₄•H₂O/SiO₂, mild condition

Azo compounds have caused great interest in organic synthesis. They are widely used as dyes and analytical reagents.¹ Optical-switching and image storage can be made using azobenzene liquid crystal films.^{2,3} Recently, many noteworthy studies have shown that some azo compounds possess excellent optical memory and photoelectric properties.^{4,5}

The oxidation of ArNHNHAr to azo compounds is an important transformation in organic synthesis. We have been paying particular and continuous attention to this field. In the previous work, NBS/pyridine⁶ and FeCl₃·6H₂O⁷ and galvinoxyl⁸ have been used as effective reagents to synthesise azo benzene. These existing methods have their merits, but they also have drawbacks such as tedious operation and using a large amount of volatile and poisonous solvent, which affects human health and the environment.

To continue our research on the synthesis of azo compounds, we decided to develop a new reagent system for the dehydrogenation of ArNHNHAr. The combination of sodium nitrite and sodium hydrogen sulfate in the presence of wet SiO₂ has been used as an effective oxidising agent for the dehydrogenation of 4-substituted- 1,2,4-triazole-3,5-diones successfully.9 The [NO⁺•crown•H(NO₃)₂⁻] complex is also reported as an effective dehydrogenation agent.¹⁰ We considered that this method might be suitable for the oxidation of ArNHNHAr, which is easily subject to rearrangement or semi-rearrangement as well as being oxidised excessively to complex compounds. In our experiments, it was demonstrated that this is an effective reagent. All reactions were performed smoothly at room temperature (Scheme 1) and completed within 30min with excellent yields. The results are summarised in Table 1. Furthermore, this method only requires simple instruments, a cheap oxidant and easy work-up procedures.

In the oxidation study, we selected **1b** as a model. The optimum molar ratio was established by reaction using **1b** (1mmol) and SiO₂ (0.3g, 60–100mesh) with various molar ratios of NaNO₂:NaHSO₄•H₂O. The results are summarised in Table 2. If NaNO₂ was used for the oxidation alone, the reaction did not occur after stirring for 24h. The oxidation of **1b** was efficiently achieved with this oxidation system. The presence of SiO₂ is crucial. Although the reaction occurs without SiO₂, the reaction period was much longer and good yields

ArNHNHAr -	NaNO	₂ /NaHSO ₄ •H ₂ O/Si	iO_2 ArN = NAr
	r.t.	30 min	
1a–1r			2a–2r
Ar: a : C ₆ H ₅ d : 4-MeC ₆ g : 4-EtOC ₆ j : 2,6-Me ₂ m : 2-ClC ₆ p : 4-BrC ₆ H	₅ H ₄ C ₆ H ₃ H ₄	b: $2-MeC_6H_4$ e: $2-MeOC_6H_4$ h: $2,3-Me_2C_6H_3$ k: $3,4-Me_2C_6H_3$ n: $3-ClC_6H_4$ q: $4-IC_6H_4$	c : 3-MeC ₆ H ₄ f : 4-MeOC ₆ H ₄ i : 2,5-Me ₂ C ₆ H ₃ l : 4-FC ₆ H ₄ o : 4-ClC ₆ H ₄ r : α-naphthyl

Scheme 1

Table 1 The oxidation of ArNHNHAr using the oxidation system of NaNO_/NaHSO_4+H_2O/SiO_2

Product	Ar	Yield/%	M.p./°C	Lit. M.p./°C ¹¹
2a	C ₆ H ₅	91	66–68	68
2b	2-MeC ₆ H₄	95	53–55	55
2c	3-MeC ₆ H ₄	84	52–54	54–55
2d	4-MeC ₆ H ₄	92	143–144	144–145
2e	2-MeOC ₆ H ₄	90	143–145	143
2f	4-MeOC ₆ H ₄	87	160–161	160
2g	4-EtOC ₆ H ₄	88	155–156	157–159
2ĥ	2,3-Me ₂ C ₆ H ₃	86	109–110	110–111
2i	2,5-Me ₂ C ₆ H ₃	86	115–117	119
2j	2,6-Me ₂ C ₆ H ₃	82	49–50	48
2k	3,4-Me ₂ C ₆ H ₃	87	142–144	140–141
21	$4-FC_6H_4$	93	99–100	99
2m	2-CIC ₆ H ₄	89	135–136	137
2n	3-CIC ₆ H ₄	86	99–100	101
2o	4-CIC ₆ H ₄	92	185–187	185
2р	$4-BrC_6H_4$	90	203–205	205
2q	4-IC ₆ H ₄	90	235–237	235
2r	α-naphthyl	83	187–189	190

were not be obtained. Therefore, we consider that the SiO_2 acts as a support and provides a heterogeneous effective surface area for the generation of HNO₂. It also makes work-up easy. No additional products were identified from this reaction.

Overall, we recommend this simple, clean and economical procedure for the dehydrogenation of aryl ArNHNHAr with excellent yields under mild conditions. In all cases, clean transformation could be detected by TLC. We believe this will present a better and more practical alternative to the existing methodologies and thus find useful application in synthesis.

^{*} To receive any correspondence. E-mail: xiaochuanli@263.net

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

Table 2 Oxidation of **1b** (1mmol) in the presence of SiO2 (0.3g,60-100 mesh) with different molar ratios of $NaNO_2^a$: $NaHSO_4 H_2O^a$

Entry	NaNO2:NaHSO4•H2O	Reaction time	Yield/%
1	1:1	30min	45
2	1.5:1.5	30min	55
3	2:2	30min	65
4	2.5:2.5	30min	80
5	3:3	30min	95
6	3:3	3h	93
7	3:3	2h	55 ^b
8	3:0	24h	little

^aCrushed to a fine powder. ^bWithout SiO₂.

Experimental

Melting points were determined on Kolfler micro melting point apparatus without correction. Elemental analyses were performed on a Perkin-Elmer 240C analytical instrument. Infrared spectra were recorded on a SP3-300 spectro photometer using KBr pellets. ¹H NMR spectra were measured in CDCl₃ using TMS as internal standard with a JEOL-90Q NMR spectrometer. Mass spectra were recorded on a KRATOS-AEI- MS50 (U.K.) spediometer.

A 50ml, one-necked, round-bottomed flask equipped with magnetic stirrer was charged with 1mmol of ArNHNHAr, 0.207g of NaNO₂ (3mmol), 0.324 g of NaHSO₄•H₂O (3 mmol), 0.3 g of SiO₂ (60–100mesh) and 15 ml acetone. The mixture was vigorously stirred at room temperature. After completion of the reaction (TLC), the reaction mixture was filtered. Then cool water (30ml) was poured into the filtrate slowly. After 30 min, the resulting precipitate was filtered, washed with water and dried under vacuum. No further purification was needed.

Data on products: Compound **2a**: Red leaflets; IR (KBr) v_{max} ; 3060, 1580, 1450 (cm⁻¹); ¹H NMR (CDCl₃) δ(ppm): 7.35–7.80 (m, 10H, 2C₆H₅); MS (*m*/*z*): 182(M⁺); Anal. Calcd. for C₁₂H₁₀N₂: C, 79.08; H, 5.53; N, 15.38. Found: C, 79.01; H, 5.58; N, 15.42.

Compound **2b**: Red leaflets; IR (KBr) v_{max} ; 3030, 2980, 2910, 1580, 1440 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 2.40 (s, 6H, 2CH₃), 7.40–7.85 (m, 8H, 2C₆H₄); MS (*m*/*z*): 210(M⁺); Anal. Calcd. for C₁₄H₁₄N₂: C, 79.95; H, 6.72; N, 13.33. Found: C, 79.91; H, 6.76; N, 13.35.

Compound **2c**: Orange needles; IR (KBr) v_{max} ; 3035, 2985, 2960, 1590, 1450 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 2.39 (s, 6H, 2CH₃), 7.38–7.80 (m, 8H, 2C₆H₄); Anal. Calcd. for C₁₄H₁₄N₂: C, 79.95; H, 6.72; N, 13.33. Found: C, 79.98; H, 6.70; N, 13.39.

Compound **2d**: Orange leaflets; IR (KBr) v_{max} , 3010, 2960, 2910, 1590, 1455 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 2.42 (s, 6H, 2CH₃), 7.30–7.85 (m, 8H, 2C₆H₄); Anal. Calcd. for C₁₄H₁₄N₂: C, 79.95; H, 6.72; N, 13.33. Found: C, 80.01.98; H, 6.69; N, 13.38.

Compound **2e**: Yellow needles; IR (KBr) v_{max} ; 3040, 2980, 2840, 1590, 1430 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 3.90 (s, 6H, 2CH₃), 7.00–8.00 (m, 8H, 2C₆H₄); MS (*m*/*z*): 242(M⁺); Anal. Calcd. for C₁₄H₁₄N₂O₂: C, 69.41; H, 5.82; N, 11.56. Found: C, 69.39; H, 5.85; N, 11.57.

Compound **2f**: Red needles; IR (KBr) ν_{max} ; 3045, 2985, 2860, 1590, 1445 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 3.93 (s, 6H, 2CH₃), 7.10–8.10 (m, 8H, 2C₆H₄); Anal. Calcd. for C₁₄H₁₄N₂O₂: C, 69.41; H, 5.82; N, 11.56. Found: C, 69.36; H, 5.85; N, 11.58.

Compound **2g**: Yellow leaflets; IR (KBr) v_{max} :, 3050, 2985, 2920, 1595, 1460 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 1.40 (t, 6H, 2CH₃), 4.10 (q, 4H, 2CH₂), 6.90–8.20 (m, 8H, 2C₆H₄); MS (*m/z*): 270(M⁺); Anal. Calcd. for C₁₆H₁₈N₂O₂: C, 71.09; H, 6.71; N, 10.76. Found: C, 71.03; H, 6.75; N, 10.85.

Compound **2h**: Yellow needles; IR (KBr) v_{max} :, 3020, 2985, 2960, 1600, 1430 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 2.30 (s, 6H, 2CH₃), 2.36 (s, 6H, 2CH₃), 7.20–8.20 (m, 8H, 2C₆H₄); MS (*m*/*z*): 238(M⁺);

Anal. Calcd. for $C_{16}H_{18}N_2$: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.58; H, 7.64; N, 11.77.

Compound **2i**: Yellow needles; IR (KBr) v_{max} :, 3020, 2990, 2975, 1590, 1435 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 2.30 (s, 6H, 2CH₃), 2.36 (s, 6H, 2CH₃), 7.20–8.20 (m, 8H, 2C₆H₃); Anal. Calcd. for C₁₆H₁₈N₂: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.55; H, 7.66; N, 11.80.

Compound **2j**: Red leaflets; IR (KBr) ν_{max} ; 3030, 2980, 2965, 1580, 1430 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 2.30 (s, 12H, 4CH₃), 7.20–8.30 (m, 6H, 2C₆H₃); Anal. Calcd. for C₁₆H₁₈N₂: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.57; H, 7.69; N, 11.77.

Compound **2k**: Red needles; IR (KBr) v_{max} ; 3020, 2980, 2970, 1560, 1420 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 2.20 (s, 6H, 2CH₃), 2.30 (s, 6H, 2CH₃), 7.10–8.20 (m, 8H, 2C₆H₄); Anal. Calcd. for C₁₆H₁₈N₂: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.50; H, 7.68; N, 11.81.

Compound **2I**: Orange leaflets; IR (KBr) v_{max} ; 3040, 1590, 1440 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 7.45–8.00 (m, 8H, 2C₆H₄); MS (*m*/*z*): 218(M⁺); Anal. Calcd. for C₁₂H₈N₂F₂: C, 66.05; H, 3.70; N, 12.84. Found: C, 65.98; H, 3.72; N, 12.90.

Compound **2m**: Red leaflets; IR (KBr) ν_{max} ; 3060, 1590, 1470 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 7.40–7.90 (m, 8H, 2C₆H₄); MS (*m*/*z*): 250(M⁺); Anal. Calcd. for C₁₂H₈N₂Cl₂: C, 57.40; H, 3.21; N, 11.16. Found: C, 57.35; H, 3.26; N, 11.21.

Compound **2n**: Orange needles; IR (KBr) ν_{max} ; 3060, 1575, 1460 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 7.30–7.85 (m, 8H, 2C₆H₄); Anal. Calcd. for C₁₂H₈N₂Cl₂: C, 57.40; H, 3.21; N, 11.16. Found: C, 57.33; H, 3.29; N, 11.19.

Compound **20**: Orange needles; IR (KBr) ν_{max} ; 3070, 1590, 1470 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 7.45–8.10 (m, 8H, 2C₆H₄); Anal. Calcd. for C₁₂H₈N₂Cl₂: C, 57.40; H, 3.21; N, 11.16. Found: C, 57.38; H, 3.28; N, 11.25.

Compound **2p**: Orange needles; IR (KBr) ν_{max} ; 3080, 1580, 1465 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 7.40–8.10 (m, 8H, 2C₆H₄); MS (*m*/*z*): 340(M⁺); Anal. Calcd. for C₁₂H₈N₂Br₂: C, 42.39; H, 2.37; N, 8.24. Found: C, 42.32; H, 2.42; N, 8.29.

Compound **2q**: Orange leaflets; IR (KBr) v_{max} ; 3070, 1580, 1460 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 7.30–7.80 (m, 8H, 2C₆H₄); MS (*m/z*): 434(M⁺); Anal. Calcd. for C₁₂H₈N₂I₂: C, 33.21; H, 1.86; N, 6.45. Found: C, 33.13; H, 1.90; N, 6.51.

Compound **2r**: Purple needles; IR (KBr) v_{max} ; 3040, 1600, 1450 (cm⁻¹); ¹H NMR (CDCl₃) δ (ppm): 7.20–8.10 (m, 12H, 2C₁₀H₆); MS (*m*/*z*): 280(M⁺); Anal. Calcd. for C₂₀H₁₂N₂: C, 85.08; H, 5.00; N, 9.92. Found: C, 85.01; H, 5.05; N, 9.97.

Received 22 November 2001; accepted 16 June Paper 01/1158

References

- 1 H. W. Russ and H. Tappe, Eur. Pat. Appl. EP., 1994, 629, 627.
- 2 T. lkeda and O. Tsutumi, Science, 1995, 268, 1873.
- 3 D. Campbell, L. R. Dix, and P. Rostron, Dyes Pigm., 1995, 29, 77.
- 4 M. Sefkow and H. Kattz, *Tetrahedron letters.*, 1999, 40, 6561.
- 5 Z.F. Liu, O.K. Hashimoto and A. Fujishima, *Nature*, 1990, 347, 658.
- 6 C.-L. Wang, X.-X. Wang and Y.-L. Wang, *Synth. Commun.*, 1999, **38(B)**, 964.
- 7 C.-L Wang, Y.-L. Wang, X.-X. Wang, J.-P. Li and H. Wang, J. Chin. Chem. Soc., 1999, 46, 131.
- 8 X.-Y. Wang, Y.-L. Wang, J.-P. Li, Z.-F. Duan and Z.-Y. Zhang, *Synth.Commun.*, 1999, **29**, 2271.
- 9 M.A. Zolfigol and E. Madrakian, *Indian. J. Chem.*, 2000, **39B**, 308.
- 10 M.A. Zolfigol, M.H. Zebarjadium, G. Chehardoli, S.E. Mallakpour and M.Shamsipur, *Tetrahedron*, 2001, 57, 1627.
- 11 I. Heibron and H.M. Bunbury, *Dictionary of Organic Compounds*, 5th Edn., Chapman and Hall, London 1982.